Benha University
Faculty of Engineering
Shoubra

Antennas \& Wave Propagation Electrical Eng. Dept.
 $4^{\text {th }}$ year communication
 2016-2017

Sheet (2)

1. Estimate the directivity of an antenna with $\boldsymbol{\theta}_{\mathbf{H P}}=\mathbf{2}^{\mathbf{o}}$ and $\boldsymbol{\Phi}_{\mathbf{H P}}=\mathbf{1}^{\mathbf{0}}$.
2. Find the number of square degrees in the solid angle Ω on a spherical surface that is between $\left(\boldsymbol{\theta}=\mathbf{2 0 ^ { \circ }}\right.$ and $\left.\boldsymbol{\theta}=\mathbf{4 0}^{\circ}\right)$, and ($\boldsymbol{\varphi}=\mathbf{3 0}$ and $\boldsymbol{\varphi}=70^{\circ}$).
3. The normalized field pattern of an antenna is given by $\mathbf{E}(\theta)=\sin \theta \boldsymbol{\operatorname { s i n }} \varphi$. $\mathbf{E}_{\mathbf{n}}$ has a value only for $0 \leq \theta \leq \Pi \& 0 \leq \varphi \leq \Pi$, and zero elsewhere, Find
a. The exact directivity.
b. The approximate directivity.
c. The decibel difference.
4. Calculate the $D_{\text {approx. }}$ from the HPBW of a unidirectional antenna if the power pattern is given by :

$$
\begin{array}{cc}
\mathrm{E}(\theta, \phi)=\mathbf{3 0} \boldsymbol{C o s}^{2} \boldsymbol{\theta} \mathbf{S i n}^{3 / 2} \boldsymbol{\Phi} \\
0 \leq \theta \leq \Pi \quad 0 \leq \Phi \leq \Pi \quad \text { and zero otherwise. }
\end{array}
$$

Then repeat by calculating $D_{\text {exact }}$ for the previous pattern. Finally calculate the db difference between the exact and approximate records.
5. The far-zone electric-field intensity (array factor) of an end-fire two-element array antenna, placed along the z -axis and radiating into free-space, is given by

$$
E=\cos \left[\frac{\pi}{4}(\cos \theta-1)\right] \frac{e^{-j k r}}{r}, \quad 0 \leq \theta \leq \pi
$$

Find the directivity using Kraus' approximate formula
6. The normalized far-zone field pattern of an antenna is given by

$$
E= \begin{cases}\left(\sin \theta \cos ^{2} \phi\right)^{1 / 2} & 0 \leq \theta \leq \pi \text { and } 0 \leq \phi \leq \pi / 2,3 \pi / 2 \leq \phi \leq 2 \pi \\ 0 & \text { elsewhere }\end{cases}
$$

Find the directivity using
(a) The exact expression
(b) Kraus' approximate formula
7. Estimate the directivity for a source with relative field pattern
a. $\mathrm{E}=\operatorname{Cos} 2 \theta \operatorname{Cos} \theta$. Assume a unidirectional pattern.
b. $\mathrm{E}=\operatorname{Sin}\left(\frac{\Pi}{2} \operatorname{Cos} \theta\right)$. Assume $0 \leq \theta \leq \Pi \& 0 \leq \varphi \leq 2 \Pi$.

Good Luck

Dr. Moataz Elsherbini
Eng. Shaimaa Ezzat

